Analisi I - IngBM - 2018-19

Compito $8/6/2019$	COMPITO A
COGNOME	NOME
MATRICOLA	VALUTAZIONE + ≡

1. Istruzioni

Gli esercizi devono essere svolti negli appositi spazi del presente fascicolo; solo questo sarà ritirato e valutato. I fogli a quadretti messi a disposizione possono essere usati liberamente ma in nessun caso saranno ritirati. Il compito è composto di due parti. La prima parte deve essere svolta preliminarmente. Essa verrà corretta per prima e valutata con un punteggio di $0 \le x \le 10$ punti. Condizione necessaria affinché venga preso in considerazione l'eventuale svolgimento della seconda parte è che $x \ge 6$. In tal caso la seconda parte viene valutata con un punteggio di $0 \le y \le 24$ punti. Il compito sarà sufficiente per l'ammissione alla prova orale se $x + y \ge 18$. In tal caso il voto di ammissione all'orale sarà $v = \min(28, x + y)$.

Attenzione. Tutte le risposte devono essere giustificate.

2. Prima parte

Esercizio 0 (punti 0). Leggere e capire le istruzioni.

Esercizio 1. (3 punti) Sia $\{a_n\}$ una successione monotona tale che $\lim_{k\to\infty} a_{2k+1} \neq \pm \infty$ Studiare il comportamento (convergente, divergente o irregolare) della successione $\{a_n\}$ SOLUZIONE.

Esercizio 2. (3 punti)

Sia a un numero reale positivo. Si consideri la successione definita per ricorrenza

$$a_0 = a \quad a_{n+1} = \sqrt{1 + a_n}$$

Provare (per induzione) che se a non è un numero razionale allora nessuno degli a_n lo è. SOLUZIONE.

Esercizio 3. (4 punti)

Dire quante radici complesse del polinomio z^4+2z^2+2 sono nel primo quadrante e quante nel terzo.

SOLUZIONE.

Il numero delle radici nel primo quadrante è nel terzo quadrante è

perché

3. Seconda parte

Esercizio 1. (8 punti)

Si consideri la funzione $f: \mathbf{R} \to \mathbf{R}$ definita da $f(x) = e^{|\sin x|}$ Determinare (se esistono):

- (1) L'insieme dei punti C di ${\bf R}$ dove la funzione f è continua.
- (2) L'insieme dei punti D di \mathbf{R} dove la funzione f è derivabile.
- (3) I punti di minimo e massimo locale della funzione f.
- (4) I punti di minimo e massimo assoluto della funzione f.
- (5) Gli asintoti del grafico della funzione f.

SOLUZIONE.

- *C* =
- \bullet D =
- I punti di minimo locale sono
- I punti di massimo locale sono
- I punti di minimo assoluto sono
- I punti di massimo assoluto sono
- Gli asintoti della funzione sono

•

Esercizio 2. (8 punti) Sia f una funzione derivabile da ${\bf R}$ a ${\bf R}$ periodica.

- Provare che f è limitata
 Provare che f' si annulla
 Dire se f' è periodica.

SOLUZIONE.

Esercizio 3. (8 punti)

Si trovi la soluzione dell'equazione differenziale

$$y" + y = \cos x$$

tale che y(0) = 0 SOLUZIONE.